
Phantasos
Team Number: 06

Members: Carter Harrod, Grant Holmes, Sandy Urazayev, Malena Schoeni, Rodrigo
Figueroa

Project Name: Phantasos

Project Synopsis
Develop a system which expands the user’s interactive capability of interfacing with a
computer using multiple sensors.

Project Description
The project aims to help develop a new interface that integrates movement from the arms
as well as eye tracking hardware and software for user input in a computer system. EMG
signals can be collected and analyzed from an arm band. We can also use accelerometer
and gyroscope sensors (and possibly other sensors as well) to provide information about
the movement and orientation of the arms. Since the forearm muscles control hand and
finger movement, we can train a machine learning classifier on the armband EMG data to
classify different discrete gestures. Such classification will allow us to directly map
intentional hand gestures to traditional key or mouse bindings. We can train an additional
machine learning model using the processeed gesture classification, accelerometer, and
gyroscope data as inputs to produce more complex, higher level physical directives that
include information from the arms in addition to the hands. This project could also be used
to help people with limited mobility interact with their environment in addition to creating
a new modality of virtual interaction for those with normal mobility. Additionally, eye
tracking could be used to increase users productivity by allowing dynamic focus switching
of windows and text boxes. Furthermore, eye tracking software could be used to augment
gaming experiences by allowing dynamic mouse acceleration to improve players’
performance and accuracy of mouse movements.

Project Milestones
● Semester 1

○ Acquire funding, order products, and handle the shipping (Nov. 10th, 2021)
■ Everyone

○ Familiarizing ourselves with the APIs (software interface) (Nov. 30th, 2021)
■ Everyone



○ Develop processing techniques for raw sensor data smoothing (Dec 15th,
2021)

■ Sandy and Malena
○ Work on feature extraction algorithms from smoothed signal (Jan. 1st, 2022)

■ Rodrigo and Carter
● Semester 2

○ Work on  classification of gestures (Feb. 20th, 2022)
■ Grant and Rodrigo

○ Work on user-oriented API for classification of discrete gestures and tune
performance (March 31st, 2022)

■ Malena and Carter
○ Augment API to allow for combinations of gestures to be recognized as well

as provide documentation for API (April 17th, 2022)
■ Everyone

Project Budget
We need budget by: ASAP Already ordered and awaiting deliveries

Device/Product Description/purpose Vendor Estimated Cost

2 x Eye tracker Track eye movement Tobii Eye Tracker
5

$600

VR Headset Integrate interface N/A $299

2 x EMG Armband Gesture detection Oymotion $3000





Preliminary Project Design

Our software is going to try to offer an improved human-computer interactive experience
by integrating devices that record and analyze data wirelessly, efficiently and in real time.
Our software is going to use special equipment that we recently acquired, which includes a
sensor for eye tracking and eye control, and two armbands that record the signal from the
muscles. The Tobii Eye Tracker 5 is a 13-inch sensor that has to be attached at the bottom
of a screen or a monitor and it gets connected to the computer by a USB cable. It tracks
head and eye movements and generates a stream of data that is later decoded and
interpreted by the desktop application. The way we are going to interact with this device is
by accessing the data stream and decode it ourselves through its API and then later assign
specific rules or events according to the type of movement or action executed by the user.
The gForcePro+ is an armband that uses Electromyography (EMG), which is a technique for
recording and evaluating electrical activity produced by skeletal muscles, and produces real
time signals that can be further processed. The armband supports up to 16 different
customizable gestures. The only limitation on the gestures you can use is that they must
produce distinct EMG signals.

Figure 1� Example of customizable gestures that can be used on the gForcePro+ [4]

For both devices, a real time data stream is recorded and parsed for our uses. For the arm
band we are getting raw EMG data for classification of gestures. The main constraint and



difficulty this provides is that due to the low level raw data, classification via machine
learning is necessary to properly distinguish gestures. The data needs to be processed in a
special way to decode which signals belong to specific movements. Another hard technical
constraint is the sensor sample rate. Fortunately, the devices we ordered have a max
sample rate of 500 Hz, which will be more than fast enough for our purposes. On the other
hand the eye tracker has a much higher level API. The data we receive from the eye tracker
is the location on the screen. Even though this data is also considered raw data, it is less
abstract and more human readable. That is why we are going to spend more time learning
and understanding EMG signals in order to develop accurate software.

Figure 2� Example of raw EMG data from the eight channels on the EMG armband [4]

As there are the data streams from our devices, there has to be a way for us to properly
receive the collected observation readings. Tobii, the manufacturer and proprietor of the
eye tracker hardware we use has provided us with their Software Development Kit (SDK),
which itself is a collection of C header files and a compiled shared object of the header file
symbols’ actual implementation. That is the general API we will be working with. Their SDK
does support wrappers in various other languages, such as: Python, .NET, and Java.
However, for the purposes of reliability, good language ecosystem, and expertise of the
team, we decided to build the core logic of our collecting and processing infrastructure in
Golang. We will still need to wrap their SDK implementations, so their SDK serves as
another technical constraint.

Golang (Go) is a statically-typed, garbage-collected, imperative programming language
developed by Googlè. We chose Go as our main target language thanks to its simplicity of
onboarding programmers with the language. Golang is able to be compiled and run on any
operating system and chip architecture, which makes our software extremely portable.



Compared to Python with its dynamic typing, Go’s static type checking during compilation
gives us a better guarantee that the program would not fail due to some type errors. Finally,
Go’s standard library provides a special package that is able to directly read C header files
for a symbol lookup. As Tobii doesn’t  provide an official API library wrapper in Go, our first
implementation step as a team is to write one ourselves. We would implement a wrapper in
Go that includes all the C-bindings to read observations from the eye tracker. This is a
small constraint to our project, as we have to implement our own tools and API wrappers.

Go supports powerful parallelization and concurrency techniques, such as launching green
threads with minimal overhead; this would allow it to process data not only in a single
stream, but serialize it across multiple subroutines and threads. As we have outlined in the
initial description of the project, we plan to utilize classification-based machine learning
tools to differentiate between discrete gestures. However, another constraint with our
system is that the overwhelming majority of machine learning algorithms and processes are
actively developed and maintained in Python’s ecosystem, not Go’s. Our solution to this is
implement an inter-process communication infrastructure (message passing through REST
or similar), such that the code written in Go can extract streams from our devices, later
passing the data to a Python process for a possible data cleanup (sometimes preprocessing
is done in hardware) and classification, and finally receiving back the decisions and pushing
them further in the data pipeline, such as applying made decisions in a game or any user’s
running application.



Figure 3� Interface Implementation Diagram

For the final product our aim is to improve the ability of users to interact with their
computers. In particular for gaming, we are trying to improve the user inputs that they are
already providing. As of right now the goal is to provide a unified interface with both of the
devices in Golang. Additionally we want to have Go communicate with a python machine
learning program for classification of gestures. Using the inputted data from these
interfaces is then used to improve players mouse and keyboard inputs. The eye tracker data
can be used to augment the gamer’s mouse inputs to make the mouse move in a weighted
way towards where they are looking. This will improve reaction time as well as mouse
accuracy. The arm band will provide context into what the user is feeling. If the user is in a
high stress scenario, we will increase the weight of the eye movements so that their
accuracy improves. In a scenario where the user has less stressful inputs, the weight would
be lessened to allow for more natural mouse movements. These scenarios can be
distinguished by the EMG’s reading of tension in the arm. Lastly, due to the nature of the
EMG as well as the eye movements, we can try to verify and classify proper inputs from
improper inputs, such as misclicks. Depending on the accuracy of the EMG, we may be able
to disregard and eliminate accidental input. This could allow for better performance overall
in gaming scenarios.

We face several notable business-oriented constraints. The primary constraint is our
deadline. We only have until the end of next semester to complete this project, so we will
need to stay organized and stick to our schedule. We do not anticipate facing any
prohibitive budget-related constraints, as we have already successfully requested and
placed orders for the primary hardware components our project will rely on. We are also
constrained by our team size. There are both advantages and disadvantages to having a
smaller or larger team, but we will need to consider our team size constraint to best
parallelize the development of our project.

Ethical issues

Since our project is dealing with signals directly from a person, such as the EMG signals in
someone's arm, or the movement of their gaze, there are multiple ethical issues around the
collection and privacy of data.

One ethical issue with the eye tracker is that tracking eye movement can possibly reveal
medical conditions of those who use our products. For example, if someone has an eye
movement disorder such as nystagmus and uses our product, our software could detect a
medical condition about the person based on their visual movement that they did not



disclose. Medical information and diagnosis are personal private data and fall under HIPPA
rules. Furthermore, our software might not be very accurate for people with eye movement
disorders which could lead to false categorization or analysis by our software and
hardware. This is an ethical issue because it is not accessible to all, and can misrepresent
the behavior of those with eye movement impairments.

Another ethical issue with the eye tracker is the privacy and sensitivity of eye tracking data.
When using a computer and browsing web pages, eye movement can accidentally reveal
personal preferences based on attention and other visual behaviors. Even though we would
be using eye tracking to improve mouse capabilities or multitask between web pages and
applications, there is still a potential to gain personal data from the eye tracking. Eye
tracking information, for example, could be used to make smarter and more targeted ads.
Like how social media uses scrolling speeds to determine a user's tastes, eye tracking
information could be used in a similar way to collect information about the user. Therefore,
it is important that our eye tracking data just be used internally and even when being
integrated with other apps and not let it be exposed or sold to third parties.

Furthermore, the eye tracker is something that attaches to the computer or monitor. It is
possible for someone to be tracked without their knowledge or consent which would be a
breach of their privacy. The eye tracker does utilize a camera and so other visual data could
be collected from the background. Our devices should only be used in an environment
where all parties are aware of the presence of the eye-tracking software and should be
used only in non-sensitive areas.

Likewise, the EMG armbands also pose similar ethical concerns regarding the
confidentiality and privacy of biomedical information. The armbands directly measure
electrical feedback from the muscles which can be classified to determine gestures and
movement of the arms. It is important that the raw data is kept private.

Although the OYMotion armbands open up the potential for a user-interface for those with
limited mobility, it does require the wearer to perform hand gestures such as making a fist,
spreading your fingers, and pinching your fingers. This could potentially exclude people
who have poor motor control. The armbands could classify gestures incorrectly for people
in these groups, or not respond at all.

Intellectual Property Issues



The first concern for intellectual property and using the hardware was ensuring that our
use case was valid for the Tobii Eye tracking hardware. There were initial concerns about
whether using their gaming product for development software was valid under their use
case. We reviewed their terms of sales and in the summary the product could be used for
“development purposes or for your private, noncommercial use only.” Because of our use
case, we can use the eye tracker to develop software for their eye tracker. Along with the
Terms of sales, their SDK also had a license attached. There were three types of licenses,
getting started, commercial, and research. Initially, we wanted to develop under the getting
started license due to us not initially having plans for commercial use. This license allows
us to develop applications for private, non-commercial use. If we later want to provide a
commercial product we can apply later for their commercial license for distribution.

For the arm band, we had similar concerns. However, the SDK and hardware were offered
under a much less restrictive license. Due to the hardware essentially being a sensor, it is
assumed that the use case is for application development and as such is perfectly viable for
our use.

Change Log

Project Budget:
Updated the date from ASAP to pending delivery. We also decided not to order the VR
headsets at this time because we want to focus on the armbands and eye tracker and not
be spread too thin.

Project Milestones:
The project milestones dates for the first semester and part of the second semester were
adjusted based on our current progress. Ordering the hardware took us longer than we
expected, and so that delayed our ability to start any software development. Therefore all
of the project milestone dates for the first semester were adjusted and pushed back. In
semester two, we also extended the time to work on the API for the classification of
gestures because we felt that it was too short originally.

Gantt Chart:
The gantt chart was updated to include who is working on what, and to reflect updated
project milestone dates.

References
[1] Tobii Terms of Sales



https://gaming.tobii.com/terms-of-sales/
[2] Tobii Getting Started Software Development License Agreement
https://developer.tobii.com/wp-content/uploads/2021/01/Tobii-Tech-Getting-Started-S
DLA-29-Sept-2020FINAL.pdf
[3] Golang
https://golang.org
[4] OYMotion EMGs
http://www.oymotion.com/search/3/?f=en&p=2&keys=terms
[4] OYMotion Development
https://oymotion.github.io/gForcePro/gForcePro/

https://gaming.tobii.com/terms-of-sales/
https://developer.tobii.com/wp-content/uploads/2021/01/Tobii-Tech-Getting-Started-SDLA-29-Sept-2020FINAL.pdf
https://developer.tobii.com/wp-content/uploads/2021/01/Tobii-Tech-Getting-Started-SDLA-29-Sept-2020FINAL.pdf
https://golang.org
http://www.oymotion.com/search/3/?f=en&p=2&keys=terms
https://oymotion.github.io/gForcePro/gForcePro/

